

AFRL-IF-RS-TR-2002-288
Final Technical Report
October 2002

AUTOMATIC RESPONSE TO INTRUSION

Boeing Phantom Works

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2002-288 has been reviewed and is approved for publication.

APPROVED:
 LUIGI SPAGNUOLO
 Project Engineer

 FOR THE DIRECTOR:
 WARREN H. DEBANY, Technical Advisor
 Information Grid Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
 October 2002

3. REPORT TYPE AND DATES COVERED
Final Mar 97 – Aug 02

4. TITLE AND SUBTITLE
AUTOMATIC RESPONSE TO INTRUSION

6. AUTHOR(S)
Dan Schnackenberg, Harley Holliday, Travis Reid, Kelly Bunn, Dan Sterne,
Kelly Djahandari, and Brett Wilson

5. FUNDING NUMBERS
C - F30602-97-C-0309
PE - 62301E
PR - F025
TA - 11
WU - 21

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Boeing Phantom Works
PO Box 3999
Seattle Washington 98124-2499

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFG Air Force Research Laboratory/SNHS
525 Brooks Road 31 Grenier Street
Rome NY 13441-4504 Hanscom AFB MA 01731-2909

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-288

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Luigi Spagnuolo/SNHS/(781) 377-4249/ Luigi.Spagnuolo@hanscom.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This contract final technical report documents the Automated Response to Intrusion project results. This project
extended concepts developed in the Dynamic Cooperating Boundary Controllers project, which developed the initial
version of the Intruder Detection and Isolation Protocol (IDIP). IDIP provides an infrastructure for intruder tracking and
containment. The focus of the extensions developed under the Automated Response to Intrusions project was to
integrate the IDIP technology with selected security technologies to improve the effectiveness of the intrusion response
system. This work also leveraged results from the Adaptive System Security Policies contract. This report provides an
overview of the current IDIP implementation and the results of this contract. It also provides references to IDIP
documentation and technical papers where more detail can be found on the IDIP implementation and architecture.

15. NUMBER OF PAGES
39

14. SUBJECT TERMS
Intruder Detection Isolation Protocol, Common Intrusion Detection Framework, Network
Intrusion Detection, Computer Security, Information Warfare 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

TABLE OF CONTENTS

1. INTRODUCTION..1

2. IDIP OVERVIEW ...1

3. PROJECT ACCOMPLISHMENTS ..8
3.1 OVERALL ACCOMPLISHMENTS ..8
3.2 ACCOMPLISHMENT DETAILS ...9

3.2.1 Capabilities Developed..9
3.2.1.1 IDIP Vulnerability Assessment Mechanisms.. 10
3.2.1.2 Packet Filtering Rule Management... 10
3.2.1.3 Transport of Component-Specific Information... 11
3.2.1.4 Integrating the Intrusion Detection and Response Policy Mechanisms .. 11
3.2.1.5 Discovery Coordinator Development ... 11
3.2.1.6 IDIP Cryptographic Protection ... 13

3.2.2 IDIP Rearchitecting...15
3.2.2.1 IDIP Response Applications ... 16
3.2.2.2 IDIP Detector Applications... 17
3.2.2.3 Discovery Coordinator Applications .. 17

3.2.3 Common Intrusion Detection Framework (CIDF) ..17
3.2.4 Component Integration..18
3.2.5 Information Assurance Demonstrations and Experiments ..20

3.2.5.1 IFD 1.1.. 20
3.2.5.2 IFD 1.2.. 20
3.2.5.3 IFE 2.1 .. 21
3.2.5.4 CIDF Demonstration (or IFE 2.2)... 21
3.2.5.5 IFE 2.3 .. 23
3.2.5.6 IFE 3.1 Integration.. 25
3.2.5.7 Distributed Denial of Service Experiment .. 25

3.2.6 Documentation...25
3.3 RELATED WORK..26

4. CONCLUSION ..26

5. REFERENCES...30

6. GLOSSARY..33

 ii

LIST OF FIGURES
FIGURE 2-1. IDIP NODES...3
FIGURE 2-2. IDIP COMMUNITIES ...4
FIGURE 2-3. ATTACK SCENARIO..4
FIGURE 2-4. IDIP LOCAL NEIGHBORHOOD RESPONSE...5
FIGURE 2-5. IDIP REMOTE BOUNDARY CONTROLLER RESPONSE..6
FIGURE 2-6. IDIP REMOTE BOUNDARY CONTROLLER RESPONSE (CONTINUED) ...6
FIGURE 2-7. IDIP INTRUSION REPORTING ...7
FIGURE 2-8. IDIP DISCOVERY COORDINATOR OPTIMAL RESPONSE ..7
FIGURE 3-1. IDIP GENERIC RESPONSE AGENT ARCHITECTURE...16
FIGURE 3-2. CIDF DEMONSTRATION CONFIGURATION ...23

LIST OF TABLES
TABLE 2-1. IDIP SUPPORTED ALGORITHMS ..14
TABLE 2-2. CRYPTOGRAPHIC MECHANISM PERFORMANCE COMPARISON ...14
TABLE 3-1. COMPONENTS INTEGRATED WITH IDIP...19

 1

Automated Response to Intrusions

1. INTRODUCTION

The initial objective of this effort was to integrate technology being developed for security
devices to cooperatively respond automatically to network intrusion across small to very large-
scale networks of networks that span numerous administrative domains. The resulting integrated
intrusion response system was to be demonstrated in a series of integrated feasibility
demonstrations (IFD) showing increasing capabilities to respond to red team attack. Through the
course of the program, the objectives changed significantly. The objective became to support a
series of experiments that attempted to improve understanding of various aspects of defense in
depth. Integrated feasibility demonstrations were replaced by major experiments requiring
integration of various technologies. As a result, our focus changed from developing a more
sophisticated intrusion response system to supporting experiments defined by the Information
Assurance program. These experiments still required integration of intrusion detection and
response components, as well as development of new capabilities. However, the developed
system was no longer the focus of the effort.

This project used the Intruder Detection and Isolation Protocol (IDIP), developed initially under
the Dynamic Cooperating Boundary Controllers contract, as the basis for integrating security
technologies into an intrusion detection and response system. The flexibility of the IDIP software
proved useful for adding management functions for IDIP-enabled components. The IDIP
software base provides an infrastructure for supporting real-time tracking and containment of
attacks both within a host and across network boundaries. This infrastructure includes the
protocols necessary for cooperation between varied intrusion detection and response components
to enable attack containment.

Section 2 contains a brief overview of IDIP. Details of the IDIP architecture, application
protocol, and message protocol are contained in [1], [2], and [3], respectively. Section 0
describes the accomplishments of this project, including contributions of this project to the
Information Assurance program experimentation effort. Section 4 provides a conclusion and
summary.
2. IDIP OVERVIEW

The IDIP concept of operations has each response component independently deciding on what is
an appropriate response. The system’s objective is to generate the response as close as possible
to the attacker, minimizing the response impact on the critical functions of the system under
attack. Each component’s objective is to allow this optimal response while protecting local
resources as well. This report discusses improvements to how IDIP nodes respond through better
cooperation and a more consistent set of response mechanisms.

The primary notion that has evolved through this effort is that IDIP responses should be taken in
two stages: (1) an initial immediate response that may be relatively harsh (i.e., may cause
damage to normal system functionality), but is relatively short-lived, and (2) a more reasoned

 2

“optimal” response that is more effective at meeting the system’s overall operational needs while
attempting to contain the attack.

The Dynamic, Cooperating Boundary Controllers contract developed IDIP and the basic IDIP
concept of operations that enables intruder tracking and containment. However, the response
mechanisms developed were generally harsh (e.g., blocking incoming TELNET connections
until manual intervention), potentially causing more damage to the system than the original
attack. However, the infrastructure developed supported later development of better response
mechanisms, and with some extensions to the protocol and response components, enabled
optimal responses that can adapt to changes in the network threat environment.

Figure 2-1 shows the various components that can participate in an IDIP-based response.
Intrusion detection components initiate IDIP response messages. Boundary controllers (e.g.,
routers and firewalls) provide network-based response mechanisms by blocking the intruder’s
access to network resources. Hosts provide finer-grained responses by killing processes and
connections associated with intruders or disabling compromised user accounts. A centralized
network management component (called the Discovery Coordinator) receives intrusion reports
and audit data from other IDIP nodes enabling it to (1) provide administrative personnel with a
global picture of the system intrusion status, and (2) coordinate the overall system response to
attacks.

The approach in this project was to use the same underlying requirements developed during the
Dynamic, Cooperating Boundary Controllers project, including providing support for responses
across heterogeneous networks of networks that may span administrative boundaries. This
implies that the mechanisms developed cannot be tightly integrated between different
components. For example, no component knows enough about the system to determine the
precise responses required. The Discovery Coordinator potentially has the knowledge required
for optimal responses within its administrative domain, but knows little about remote
administrative domains. The synergy gained from the Adaptive System Security Policies
contract enabled development and demonstration of more capabilities than originally planned.

The overall approach was to (1) implement extensions to IDIP in response to requirements for
Information Assurance program demonstrations and experiments, and (2) integrate IDIP with
components as needed to achieve the functionality required for Information Assurance program
demonstrations and experiments.

 3

Intrusion Detection
System

Routers

Firewall

Server Client

Network Manager
(Discovery Coordinator)

Intrusion Detection
System

Firewall

Firewall

Figure 2-1. IDIP Nodes

The IDIP application layer protocol coordinates intrusion tracking and isolation. IDIP systems
are organized into IDIP communities (as shown in Figure 2-2). Each IDIP community is an
administrative domain, with intrusion detection and response functions managed by a component
called the Discovery Coordinator. Communities are further organized into IDIP neighborhoods.
These neighborhoods are the collection of components with no other IDIP node between them.
Boundary control devices are members of multiple IDIP neighborhoods.

IDIP’s objective is to share the information necessary to enable intrusion tracking and
containment. Figure 2-3 through Figure 2-8 illustrate how IDIP accomplishes intrusion response.
When an attack traverses an IDIP-protected network, each IDIP node along the path is
responsible for auditing the connection or datagram stream1.

1 For brevity we will henceforth use the term connection generically to refer to both TCP
connections and datagram packet streams.

 4

Community

Boundary
Controllers

Discovery
Coordinator

Intrusion Detection
System

Neighborhood 2

Intrusion Detection
System

Neighborhood 1

Neighborhood 3
Boundary

Controllers

Boundary
Controller

Figure 2-2. IDIP Communities

Intrusion
Detection
System

Boundary
Controller

Discovery
Coordinator

Attacking
Host

Attacked Host

Boundary
Controller

Boundary
Controller

Boundary
Controller

Figure 2-3. Attack Scenario

 5

On detection of an attack, the detecting IDIP node determines the appropriate response, and if a
response is indicated, notifies its neighbors of the attack. Each IDIP node makes a local decision
as to what type of response (e.g., kill the connection, install filtering rules, disable the user
account) is appropriate based on the attack type, attack certainty, attack severity relative to the
type of attack and vulnerability of components under attack, what other IDIP nodes have already
done, and local policy constraints (e.g., never disable HTTP between 8 AM and 4 PM). The
types of issues addressed by the response policy are shown in Figure 2-4. The attack responses
are appended to the attack description prior to forwarding the attack description to neighboring
IDIP nodes. This enables IDIP to trace the attack back to the edge of the IDIP-protected system,
taking appropriate responses at each IDIP node along the attack path. Nodes that receive reports
from neighbors determine if they are on the attack path (i.e., whether they have seen the
connection described by the attack report) before forwarding the attack report. This process
continues (as shown in Figure 2-5 and Figure 2-6) until the IDIP system edge is reached.

Intrusion
Detection
System

Boundary
Controller

Discovery
Coordinator

Attacking
Host

Attacked Host

Boundary
Controller

Boundary
Controller

Boundary
Controller• Do I trust the detector?

• Do I even care about the attacked
resources?

• Are the lost resources from blocking
more valuable than the attacked
resources?

• Is the requested blocking interval too
long? Too short?

• Do I trust the detector?
• Do I even care about the attacked

resources?
• Are the lost resources from blocking

more valuable than the attacked
resources?

• Is the requested blocking interval too
long? Too short?

• How severe is this?
• How certain am I?

Trace attack and
Block attack for two
minutes

• How severe is this?
• How certain am I?

Trace attack and
Block attack for two
minutes

Figure 2-4. IDIP Local Neighborhood Response

 6

Intrusion
Detection
System

Boundary
Controller

Discovery
Coordinator

Attacking
Host

Attacked Host

Boundary
Controller

Boundary
Controller

Boundary
Controller

• Do I trust the detector?
• Do I even care about the attacked

resources?
• Are the lost resources from blocking

more valuable than the attacked
resources?

• Is the requested blocking interval too
long? Too short?

• Do I trust the detector?
• Do I even care about the attacked

resources?
• Are the lost resources from blocking

more valuable than the attacked
resources?

• Is the requested blocking interval too
long? Too short?

Trace attack and Block
attack for two minutes

Trace attack and Block
attack for two minutes

Figure 2-5. IDIP Remote Boundary Controller Response

Intrusion
Detection
System

Boundary
Controller

Discovery
Coordinator

Attacking
Host

Attacked Host

Boundary
Controller

Boundary
Controller

Boundary
Controller

• Do I trust the detector?
• Do I even care about the attacked

resources?
• Are the lost resources from blocking

more valuable than the attacked
resources?

• Is the requested blocking interval too
long? Too short?

• Do I trust the detector?
• Do I even care about the attacked

resources?
• Are the lost resources from blocking

more valuable than the attacked
resources?

• Is the requested blocking interval too
long? Too short?

Trace attack and Block
attack for two minutes

Trace attack and Block
attack for two minutes

Figure 2-6. IDIP Remote Boundary Controller Response (Continued)

 7

Intrusion
Detection
System

Boundary
Controller

Discovery
Coordinator

Attacking
Host

Attacked Host

Boundary
Controller

Boundary
Controller

Boundary
Controller

Saw attack and did not
Block

Saw attack and did not
Block

Saw attack and
Blocked attack for ten
minutes

Saw attack and
Blocked attack for ten
minutes

Saw attack and did not
Block

Saw attack and did not
Block

Saw attack and
Blocked attack for two
minutes

Saw attack and
Blocked attack for two
minutes

Saw attackSaw attack

Figure 2-7. IDIP Intrusion Reporting

Intrusion
Detection
System

Boundary
Controller

Attacking
Host

Attacked Host

Boundary
Controller

Boundary
Controller

Boundary
Controller

• Do I trust the detector?
• Do I even care about the attacked resources?
• Are the lost resources from blocking more valuable

than the attacked resources?
• Is the requested blocking interval too long? Too

short?
• Are there alternate paths the attacker can take?
• Is this part of a larger, more wide-spread attack?
• Are there responses that are no longer needed?
• Are additional responses needed by IDIP

components?
• Can I use other resources (e.g., SNMP) to further

contain the attack?

• Do I trust the detector?
• Do I even care about the attacked resources?
• Are the lost resources from blocking more valuable

than the attacked resources?
• Is the requested blocking interval too long? Too

short?
• Are there alternate paths the attacker can take?
• Is this part of a larger, more wide-spread attack?
• Are there responses that are no longer needed?
• Are additional responses needed by IDIP

components?
• Can I use other resources (e.g., SNMP) to further

contain the attack?

Relax the blockingRelax the blocking

Disable Ethernet portDisable Ethernet port

Block indefinitelyBlock indefinitely

Discovery
Coordinator

Figure 2-8. IDIP Discovery Coordinator Optimal Response

 8

Additionally, each IDIP node sends a copy of the attack report (along with the local responses)
to the Discovery Coordinator (Figure 2-7). The Discovery Coordinator can then correlate reports
to gain a better overall picture of the situation, and also issue response directives back to
individual nodes (Figure 2-8) to either remove an unnecessary response (e.g., firewall filtering
rule), or add a response (e.g., firewall filtering rule along an alternate attack path). The
Discovery Coordinator is expected to be co-located with the domain’s network management
facilities, providing the Discovery Coordinator with the network global topology, enabling the
selection of the optimal points in the network to block harmful connections.

Figure 2-1 not only shows intrusion detection systems and boundary controllers as IDIP nodes,
but also shows that hosts may participate in an IDIP system. Hosts can provide more fine-
grained responses as they can trace the intrusion back to the process and user initiating the
intrusion from the local host. When an intruder is performing an attack after hopping through
multiple hosts, IDIP-enabled hosts allow the intrusion to be traced back through these hosts,
which is not possible if only boundary controllers participate in the IDIP system.

Note that allowing hosts to participate in IDIP raises two significant issues for the underlying
protocol mechanisms: (1) IDIP neighborhoods may grow to be very large, and (2) some IDIP
nodes may be significantly less “trustworthy” than others because they may have a number of
vulnerabilities available for an attacker to use. Because neighborhoods may grow very large,
IDIP is designed for multicast operation. At the application level, all neighborhood
communication is multicast. This second factor implies that some IDIP nodes may be
compromised and potentially used against the system. For this reason, IDIP has features that
enable it to distinguish less trustworthy components from more trustworthy components.

3. PROJECT ACCOMPLISHMENTS

The following sections detail the project accomplishments, including capabilities developed,
IDIP rearchitecting, contributions to CIDF, component integration, demonstrations and
experiments, and documentation, as well as a brief description of related work.

3.1 Overall Accomplishments

The major contribution of this project to the Information Assurance program was to provide the
primary integrating mechanism for many of the Information Assurance demonstrations and
experiments. Through the course of the program, IDIP became the means to easily add new
functional capabilities (e.g., INFOCON distribution) that required inter-device cooperation. This
was primarily because IDIP was integrated with most security technologies developed or used in
the Information Assurance program.

Beyond providing the glue for security component integration, IDIP provided functionality used
in multiple experiments and demonstrations. IDIP was central to the first few integrated
feasibility demonstrations. The first major program integrated feasibility experiment (IFE)
focused on intrusion response. Subsequent experiments that focused on intrusion response using

 9

IDIP included the distributed denial of service (DDoS) and vulnerability assessment
experiments. These are described in detail in subsequent sections.

In providing the integration medium for several demonstrations and experiments, several
extensions to the core IDIP functionality were developed to improve functionality and robustness
of the intrusion detection and response infrastructure. These are described in Section 0.

3.2 Accomplishment Details

This project focused on several related areas of intrusion response:

1. Improving the core IDIP functionality to support demonstrations and experiments planned by
the Information Assurance system integrator.

2. Restructuring the core IDIP functionality to enable low-cost integration of varied security
technologies.

3. Supporting the Common Intrusion Detection Framework (CIDF) working group in
developing a standard format for exchange of intrusion detection and response data.

4. Developing the discovery coordinator concept and features to enable monitoring and control
of the intrusion detection and response infrastructure.

5. Refining the IDIP cryptographic mechanisms to enable self-protection of the intrusion
detection and response infrastructure.

6. Integration of selected security technologies into the intrusion detection and response
infrastructure.

7. Support for Information Assurance program demonstrations and experiments.

The following sections provide details of the work accomplished in each of these areas.

3.2.1 Capabilities Developed

The Adaptive System Security Policies contract provided a number of mechanisms to control
detector and response functions of the IDIP agents. The Automatic Response to Intrusion project
integrated these mechanisms into the IDIP code base and extended the policy mechanisms to
support the needs of various demonstrations and experiments. Among the extensions were -

• Control of vulnerability scanning within an IDIP community. This feature enables the
Discovery Coordinator to schedule vulnerability scans across an administrative domain and
coordinate this scanning with the detection and response infrastructure to prevent reporting
and response to friendly scans.

• Management of firewall and filtering router rule sets.

• Extensions to IDIP detector agent software to enable transport of component-specific
information in attack reports. This enables operators to view the additional information
available from some detectors that is not otherwise required by the IDIP infrastructure.

• Integration and extension of intrusion detection and response policy mechanisms.

 10

• Development of core Discovery Coordinator components to support system-wide situation
assessment, generation of global responses, and management of intrusion detection and
response capabilities.

• Improvements to IDIP cryptographic mechanisms to improve system robustness, including
use of (1) higher performing (and more readily accessible) software cryptographic
algorithms, (2) more robust key distribution algorithms, and (3) X.509 certificates as IDIP
credentials.

3.2.1.1 IDIP Vulnerability Assessment Mechanisms

Several IDIP mechanisms both within the IDIP agents and the Discovery Coordinator were
developed to support the use of scanners within an IDIP community. These include-

• Discovery Coordinator controlled scheduling of scans.

• Coordination of scans with IDIP agents to avoid reporting friendly scans as attacks.

• Discovery Coordinator processing of vulnerability reports and generation/distribution of new
agent policy files.

• Agent policy mechanisms to control IDIP responses for exploits for which the system is not
vulnerable.

• Agents can be configured to report, trace, audit, or block on exploits for which the system is
not vulnerable.

These new mechanisms allow the system administrator to specify how to respond to friendly
scans and how to respond to exploits to which the system is not vulnerable. For example, if the
system is not vulnerable to a specific exploit, the policy can be configured to report and trace the
attack, but not perform and blocking. [4] provides more detail on this feature.

3.2.1.2 Packet Filtering Rule Management

IDIP policy mechanisms were extended to support generic specification of packet filtering rules
for IDIP-enabled response components. These rules are all parameterized by INFOCON and
defensive posture to enable automated change of firewall and filtering router rules when either
INFOCON or defensive posture changes. These mechanisms provide central management of
firewalls and filtering router access control features within an administrative domain. These
same mechanisms could also be used to configure filtering rules on end systems through
configuring personal firewalls or mechanisms such as Transmission Control Protocol (TCP)
wrappers.

One aspect of this development worth mentioning is that with the use of existing IDIP
mechanisms, the new capabilities only required 1 day to develop. The existing policy framework
and policy distribution mechanisms enabled these changes with only a small amount of
additional software.

 11

3.2.1.3 Transport of Component-Specific Information

One of the problems with using a canonical list of attack names (such as those used in CIDF [5])
is that when new attacks are discovered, if the canonical list has not kept pace with the new
attacks, there is no way to represent the new attacks. IDIP overcomes this drawback by carrying
component-specific attack names and other component-specific fields within the CIDF payload.
This component attack name can be used when there is no mapping from the component-
specified attack to the CIDF attack codes. Response devices that do not understand this attack
code will still be able to respond if the attack class is specified. If the attack class is unspecified,
then response devices will trace and report, but not take other actions. Administrators at the
Discovery Coordinator can still generate a response based on human understanding of these new
attacks.

3.2.1.4 Integrating the Intrusion Detection and Response Policy Mechanisms

The Adaptive System Security Policies project developed a “cost model” approach to
determining appropriate responses to cyber attacks. This cost model determines the cost (in
terms of system degradation) of the attack and attempts to find a response that costs less than the
attack. Cost models were developed for use by the detection, response, and Discovery
Coordinator components. These cost models use policies to determine how the intrusion
response system should react to various situations. All of these policies are parameterized by
INFOCON and defensive posture to enable a different policy set to be used for each INFOCON
and defensive posture. The Automatic Response to Intrusion project integrated these
mechanisms by enabling centralized management of these cost models at the Discovery
Coordinator.

The initial policy components were available for IFD 1.2. These were modified and extended as
new requirements for controlling the intrusion detection and response system emerged from
requirements for each demonstration and experiment. The core policy framework enabled most
of the policy processing and distribution functions to be shared by the various policy
components. This strategy enabled easy addition of new policy elements.

The policy mechanisms enable an administrator to specify unique policies for each interface of
each IDIP-enabled component or to use a generic policy applicable across the entire
administrative domain. The administrator may also specify that some components use the
generic policy, while others have a unique policy. Policy mechanisms for IDIP agents include
rules for event aggregation, false positive suppression, repeated alert suppression, host-based
response (e.g., kill process or disable user account) control, network response (e.g., block web
access) control, and vulnerability assessment scanning. Discovery Coordinator policies control
the generation of system-wide responses.

The policy mechanisms are described in detail in [4].

3.2.1.5 Discovery Coordinator Development

At the beginning of this project, the Discovery Coordinator was a location to receive alerts with
a primitive command line display. Making the IDIP infrastructure usable for the varied

 12

demonstrations and experiments in the Information Assurance program required that several
features be added to the initial Discovery Coordinator.

Our strategy was to produce relatively lightweight independent processes, where each process
provides a specific Discovery Coordinator feature. This strategy enabled easy modification of
Discovery Coordinator features and addition of new features because these independent
processes have very few dependencies. Interactions between Discovery Coordinator processes
generally occur over the standard IDIP message service, which allows process to subscribe to
any of the message types desired. This publish-subscribe approach helps maintain low coupling
between processes.

The Discovery Coordinator receives reports from each detection and response component
involved in reacting to intrusion events. Because the Discovery Coordinator is expected to be co-
located with network management mechanisms, the Discovery Coordinator can use the reports
(which describe the attack, provide the attack path, and detail the response taken along the attack
path) to develop an optimal response for the administrative domain. The component that
determines the optimal response uses the Discovery Coordinator policy mechanisms to provide
user control over these global responses.

Beyond generating global responses, Discovery Coordinator processes were developed to
(1) combine related reports to avoid taking multiple responses to multiple reports of the same
event, (2) forward policy files to IDIP agents on either initialization or when policy changes are
made, (3) distribute changes to INFOCON and defensive posture, (4) interface to the public
domain Scotty network management system, (5) provide a graphical user interface (GUI) for
editing IDIP policy, (6) interface to the Information Assurance program’s Cyber Command
System, (7) modify response policy based on results of vulnerability scans, (8) schedule
vulnerability scans, and (9) transform CIDF-formatted IDIP reports into other formats for
consumption by other tools.

Several interfaces were developed to support integration with other components that attempt to
provide a global view of network attacks. Interfaces were developed to support integration with
U.C. Davis’s Graphical Intrusion Detection System (GrIDS), Intrusion Detection Message
Exchange Format (IDMEF) defined by Internet Engineering Task Force (IETF) [6],
MountainWave’s tools, and Rome Lab’s interface to Oracle used by their Automated Intrusion
Detection Environment (AIDE) [7] component.

The Scotty network management system provides the primary user interface. IDIP extension to
the Scotty’s user interface provides notification of attacks by coloring network components on
Scotty’s network map as the Discovery Coordinator receives attack reports. Attack detectors,
victim, source, and responders are each colored differently to help the administrator understand
how the intrusion detection and response system reacted to the attack. Other extensions to the
GUI allow the administrator to “undo” the automated responses taken by IDIP-enabled
components, display the network map for older attacks, and view the IDIP report details. The
IDIP extensions to Scotty also allow other Discovery Coordinator processes to issue Simple

 13

Network Management Protocol (SNMP) messages as a response mechanism. For example, this
feature enables the Discovery Coordinator to issue interface shutdown commands to SNMP-
controlled devices. This extends the reach of the intrusion response system beyond IDIP-enabled
devices to those devices that response to SNMP messages.

The interface developed for the Cyber Command System enables that component to perform the
same features available to other Discovery Coordinator processes: (1) issue a response directive,
(2) undo a response, (3) receive IDIP reports, (4) change INFOCON and defensive posture, and
(5) modify IDIP policies.

On additional feature IDIP supports is distribution of Discovery Coordinator mechanisms. The
Discovery Coordinator is provided a multicast address, and the IDIP configuration files specify
the set of IP addresses that are mapped to that multicast address. IDIP agent and Discovery
Coordinator applications use the Discovery Coordinator multicast address to communicate with
Discovery Coordinator processes, and the IDIP multicast mechanisms provided reliable, secure
message delivery to those Discovery Coordinator processes that have subscribed for those
messages. This enables redundancy to be used to increase Discovery Coordinator survivability
and spreading the Discovery Coordinator load across multiple machines to reduce processing
load.

3.2.1.6 IDIP Cryptographic Protection

To protect IDIP messages from adversary exploitation, IDIP cryptographic mechanisms were
developed in the initial Dynamic Cooperating Boundary Controllers effort. Those initial
mechanisms were based on the Fortezza cryptographic card and provided basic privacy,
authentication, integrity, and key distribution services for IDIP messages. However, the Fortezza
implementation was sufficiently slow to adversely impact IDIP’s ability to react to attacks that
generated a large number of reports or attacks through an already busy boundary controller.
Another drawback of the initial implementation was the use of a custom certificate format. [8]-
[12] provide the details of the IDIP cryptographic protocols.

To overcome these performance and interoperability issues, this project made two major
improvements to the IDIP cryptographic mechanisms: (1) implementation of cryptographic
services using a public domain cryptographic library [13] and (2) use of the standard X509v3
certificate format for IDIP credentials. A third feature developed was a mechanism to support
administrative domains where some components are less trustworthy than other components.

Table 2-1 shows the cryptographic algorithms supported by the Fortezza and software
cryptographic mechanisms.

 14

Cryptographic
Feature

Initial Fortezza
Implementation

Current Software Cryptographic
Implementation

Data Privacy Skipjack DES
Data Integrity SHA-1 SHA-1
Digital Signature DSA DSA
Key Exchange KEA El Gamal (Modified Eric Young’s Diffie-Hellman)

Table 2-1. IDIP Supported Algorithms

The software cryptographic functions provided dramatic performance improvements over the
Fortezza algorithms as shown in Table 2-2. The poor performance of the Fortezza-based
implementation caused some instability in IDIP operation in IFD 1.1. The software
cryptographic mechanisms improved performance sufficiently that the stability problems did not
reappear in later demonstrations and experiments.

Fortezza Software Crypto
Message Size Message Size

System

Operation

1K .25K 1K .25K
HMAC-SHA 168 ms 158 ms 2 ms 2 ms
Encrypt 122 ms 119 ms 2 ms 1 ms
Decrypt 120 ms 116 ms 2 ms 1 ms
Sign 191 ms 177 ms 152 ms 152 ms

Solaris

Verify 255 ms 239 ms 299 ms 301 ms
HMAC-SHA 159 ms 152 ms 2 ms 2 ms
Encrypt 121 ms 119 ms 1 ms 1 ms
Decrypt 114 ms 112 ms 1 ms 1 ms
Sign 178 ms 170 ms 46 ms 47 ms

BSDI

Verify 250 ms 235 ms 92 ms 93 ms

Table 2-2. Cryptographic Mechanism Performance Comparison

The major changes required to support X509 certificates were in the software implementing the
Neighborhood Key Information Distribution (NKID). There were a small number of extensions
required to NKID to enable support for both the IDIP and X509 credential formats.

To support less trustworthy IDIP nodes (e.g., client workstations), the notion of a
subneighborhood was added to the IDIP messaging services and the cryptographic mechanisms.
A subneighborhood can be established within an IDIP neighborhood to separate messaging
required by the more trusted components from communication with all neighbors. Each
neighborhood can support multiple multicast groups, each representing a collection of
components that are equally trustworthy.

A final issue with the initial cryptographic services addressed by this effort was the key
distribution protocol (NKID). The NKID initial version relied on a neighborhood captain to
distribute keys for the neighborhood. This approach proved unreliable in certain attack scenarios.

 15

A better strategy was developed where each node in a multicast group generates its own transmit
key. This removes a single point of failure and a source of software complexity from our initial
implementation.

3.2.2 IDIP Rearchitecting

The initial IDIP code base, developed for the Dynamic Cooperating Boundary Controllers
project, was used to demonstrate the feasibility of automated response. The code was used to
integrate a small number of components: a custom router, firewall, and detector. Supporting the
larger set of components required by the Information Assurance program, coupled with the
continued uncertainty of which components would be required next, led to the conclusion that
the initial IDIP software architecture would be too costly to maintain. A new software
architecture for our IDIP code was developed that reduced the amount of component-specific
software. This architecture is depicted below in Figure 3-1 for the generic response component.
The architecture for detection components is similar.

This new architecture isolates most of the IDIP functionality from component-specific features
enabling adding new features at low cost and enabling changes to the on-the-wire encoding
without modification of the core software functionality. The new architecture also reduced the
amount of software needed to integrate new components into the IDIP infrastructure. This
greatly reduced the cost and risk of integrating with new components such as NetRadar and
Sidewinder. This architecture also isolated operating system specific functions into a separate
library. Porting to a new operating system requires modification to this one file to provide the
operating system features required for the core IDIP functionality.

The following sections describe the architecture for IDIP response, detection, and Discovery
Coordinator applications. [14] has more detail on the architecture and specific features of these
three types of applications.

 16

IDIP Generic Agent
 Message processing
 Connection search
 Cost model

Component-Specific Functions
 Response implementation

IDIP Message Layer
• Reliable, Secure Message Transmission

IDIP Audit
Data

String
Detection
Reports

IDIP Audit

Detector-Specific
Wrapper

Figure 3-1. IDIP Generic response agent architecture

3.2.2.1 IDIP Response Applications

Figure 3-1 shows both detection and response functions. IDIP response components can also be
used as detectors. Most IDIP responders are access control components. Attempts to gain
unauthorized access are an indicator of attempted attacks. A component-specific detector
wrapper process writes intrusion inputs to an event report file in the IDIP string format. Generic
functions in the IDIP agent read event reports from the file and apply the intrusion detection
policy mechanisms to determine if the event (or accumulation of events) warrants generation of
an attack report. Attack reports initiate the response engine’s actions. The response engine uses
the response policy to determine (1) what local responses (e.g., kill a local process or install a
packet filtering rule) are required, (2) whether to trace the attack, and (3) whether a report should
be sent to the Discovery Coordinator. Only the mechanisms for handling the local response
actions are component-specific. The remainder of the software is common between response
components. When messages are sent, the IDIP message layer provides reliable secure message
delivery.

Response agents also respond to trace messages from other IDIP components. On receipt of a
trace message the IDIP agent searches the IDIP audit trail of recent connections for matches with
the packets described by the IDIP trace message. The IDIP audit mechanism provides generic
functions based on a public domain monitoring library [15]. These mechanisms monitor network
traffic through the device and record in a network audit trail the address and port information for
the connections and datagrams that pass through the device. If it is determined that the attack
may have come through the device, the agent uses the policy mechanisms to determine the local
response to take, and then forwards the trace message to its neighbors along the attack path and
sends a report to the Discovery Coordinator.

 17

3.2.2.2 IDIP Detector Applications

The generic IDIP detector uses the same detection interface as the response components. The
major difference is that detectors do not respond to trace messages. Because of this, detector
agents do not need the IDIP audit functions or the component-specific response functions.

The string API used by both detection and response components was originally developed to
enable easy integration of detectors. This API enabled independent development of component-
specific detector wrappers. Developers of these wrappers do not require the full IDIP software
base, just a simple string validation process that was developed to determine whether the IDIP
software would be able to parse the strings provided by the wrapper. This API was first used to
integrate RealSecure, which took only 10 hours demonstrating the utility of this approach.

3.2.2.3 Discovery Coordinator Applications

Because each Discovery Coordinator application has a unique purpose, they use less shared
functionality than the generic agents do. Discovery Coordinator applications use the same
interface to the message layer as the generic agent application.

Because there was little definition of what should exist at the Discovery Coordinator, the
objective was to provide a flexible environment. This led to the following features: (1) support
for a publish-subscribe interface that enabled loosely coupled message sharing, (2) use of
multicast addressing for the Discovery Coordinator enabling the Discovery Coordinator
functions to be split among multiple hosts with all applications having all visibility of all
messages, (3) support for multiple correlation components enabling components with different
strengths to be used concurrently, and (4) minimal set of required processes. The only required
process at the Discovery Coordinator is the policy distribution process for distributing policy and
configuration data to IDIP agents as they initialize. Running the local GUI or the interface to the
Cyber Command System also requires the use of the local attack aggregation process. Other
processes (e.g., global response generation) are only used if needed by the current demonstration
or experiment.

This strategy of minimizing the coupling between functions at the Discovery Coordinator
enabled easy integration of new features and modification of existing capabilities. Integrating
with other tools was accomplished by adding a simple adaptor process to convert the incoming
alerts or response messages to the format required by the tools. For example, integrating with
AIDE involved converting the CIDF messages to a string format used by Rome Lab’s interface
software for insertion into an Oracle database. This integration only required a couple of days
effort, most of which was spent determining the semantics of the database fields and the
mapping to CIDF constructs. Although this interface was never used, the development effort
illustrates how the Discovery Coordinator architecture supports ease of integration.

3.2.3 Common Intrusion Detection Framework (CIDF)

Although not part of the original project plan, this project contributed significantly to the CIDF
effort, including (1) developing approaches and Common Intrusion Specification Language

 18

(CISL) [5] constructs for communicating response requests and actions; (2) developing an
approach to modifying CISL messages without losing the original data or signature (e.g.,
because of translation required from connections that pass through firewall proxies and network
address translation devices); (3) developing the CIDF message layer [16]; (4) contributing to
CISL binary encoding rules; (5) contributing to removal of CISL specification ambiguities;
(6) developing a CIDF implementation of IDIP for use in integrating components for the CIDF
demonstration; and (7) serving as integrator for the CIDF demonstration.

The CIDF working group held two separate interoperability tests that this project supported. Our
initial CIDF application layer implementation was used for CIDF interoperability testing at U.C.
Davis June 15-17 1998, providing one of the three implementations of the CIDF encoding. These
were each determined to be interoperable after some minor adjustments during the week. The
second major test also served as IFE 2.2 in June 1999, and is described in more detail in Section
0.

3.2.4 Component Integration

In support of the Information Assurance program demonstrations and experiments, IDIP was
integrated with selected COTS products and research prototypes. Table 3-1 shows the set of
detection and response components integrated through the life of the project.

Beyond this set of components, CyberCop Scanner [35] was integrated to help assess the issues
involved in integrating vulnerability scanners. [4] details how the integrated system operates.
The scanner integration required some changes to the IDIP core software, including extensions
to the policy mechanisms to support control of scanning and control of responses to friendly
scans. Detection and response agents also require knowledge of when scans are occurring so that
they can determine whether a scan is friendly or not. Most of the new software was developed to
configure the scanner and process the results. The two primary uses for scan data are (1) to
detect unexpected changes in vulnerability results, which may indicate that the scanned
component has been compromised and (2) to modify IDIP response policies so that the responses
are less harsh for those attacks for which the target component is not vulnerable.

 19

Response Components Intrusion Detection Systems Correlation Components
NAI Gauntlet Internet
Firewall (multiple
versions) [17] (product
transitioned from NAI to
Secure Computing)

Net Squared Network Radar
[26]

U.C. Davis GrIDS Prototype
[32]

Secure Computing
Corporation Sidewinder
Firewall [18]

SRI EMERALD Basic
Security Module (BSM) and
EMERALD File Transfer
Protocol (FTP) Monitors
Prototypes [27]

Stanford Complex Event
Processing (CEP) Correlator
[33]

Linux Router NetFilter and
IP Filter [19] [20]

Oregon Graduate Institute
StackGuard [28]

Silicon Defense
Corroborator

NAI Labs ARGuE Prototype
[21]

ORA Common Object
Request Broker Architecture
(CORBA) Immune System
Prototype [29]

Rome Labs AIDE system [7]

NAI Labs Multi-Protocol
Object Gateway Prototype
[22]

NAI CyberCop Server and
CyberCop Monitor (no longer
supported by NAI)

Mountain Wave Recon
system [34]

Firewall Toolkit [23] NAI VirusScan [30] IDIP’s mechanism for
merging multiple reports of
the same event

TCP Wrappers [24] Internet Security Systems
RealSecure [31]

SRI EMERALD IDIP
monitor

NAI Labs Generic Software
Wrappers Prototype [25]

Custom MD5-based file
modification detector

Solaris process and user
account management
mechanisms

Custom Oracle log based
detector

 Custom promiscuous mode
detector

 Custom BSM log-based
detector

Table 3-1. Components Integrated with IDIP

 Gauntlet is a registered trademark of NAI. Sidewinder is a registered trademark of Secure Computing Corporation. CyberCop is a registered
trademark of NAI. RealSecure is a registered trademark of ISS.

 20

Most of these components required very little, if any, modification of core IDIP functionality to
achieve full functionality. However, for Multi-Protocol Object Gateway, several new responses
were desired to support the object-based access control mechanisms of the component. These
new responses were integrated with the policy mechanisms to enable control of these responses
from the Discovery Controller and with CISL to enable description of the responses in reports to
the Discovery Coordinator. The following lists the Multi-Protocol Object Gateway (MPOG)
responses.

• Deny Role

• Deny Principal

• Deny Principal in Role

• Deny Client

• Deny Principal from Client

• Deny Service

• Deny Service from Client

• Deny Server

• Deny Service on Server

• Require Use of Security Protocol

3.2.5 Information Assurance Demonstrations and Experiments

Initially, the Information Assurance program hosted periodic Integrated Feasibility
Demonstrations (IFD) to demonstrate the extent of integration of technologies under
development by the Information Assurance program. After the initial IFDs, the program began
hosting periodic major experiments that involved many of the technologies under development.
The following sections describe this project’s participation in these events.

3.2.5.1 IFD 1.1

IFD 1.1 was a demonstration of the capabilities of Information Assurance program technologies
very early in the program before inter-project integration could occur. This project demonstrated
the integration of components that were developed under the Dynamic Cooperating Boundary
Controllers contract, plus Gauntlet, CyberCop Server, and GrIDS. The primary result of the
effort involved in this integration was the beginning of the IDIP software restructuring to enable
lower cost component integration.

3.2.5.2 IFD 1.2

IFD 1.2 was the initial effort at integrating other Information Assurance program components.
Beyond the integrated components from IFD 1.1, NetRadar and Sidewinder were integrated.
This was the first integration of the Discovery Coordinator system-level response mechanisms. A
SNMP trap mechanism was developed to enable the Discovery Coordinator to send the initial

 21

version of the Cyber Command System these system-level responses. This IFD also used a red
team from GTE to begin testing the ability of the system to survive attack. The IDIP
infrastructure was able to track the GTE red team progress and display these alerts at the
Discovery Coordinator. A lesson learned from the red team exercise in this IFD was that a
mechanism was needed to throttle detection reports, particularly repeated reports of the same
events. By scanning an entire network, the red team was able to clog the IDIP infrastructure with
intrusion reports of the scan. These thousands of reports all represented one event, but were
treated as separate events by the detectors and hence by the IDIP infrastructure.

3.2.5.3 IFE 2.1

Beginning in the 1999, the Information Assurance IFDs were transformed into Integrated
Feasibility Experiments (IFE). These IFEs were intended to explore problems in information
assurance. However, IFE 2.1 occurred before the experimentation approach was developed and
was really just another IFD.

For this IFE, a number of components were integrated, along with some improvements made to
the core IDIP software. IDIP software improvements integrated included the new message layer
software, key distribution software, detection and response policy mechanisms, generic detection
and response processes, string API, and new Discovery Coordinator components. Integrated
components included EMERALD, NetRadar, NAI Labs UNIX wrappers, ARGuE, MPOG,
NetRadar, CyberCop Server, Gauntlet, RealSecure, and the Cyber Command System. During the
IFE, an experiment in Cyber Command System flexibility was accomplished by using the
flexibility of the IDIP infrastructure to develop some additional IDIP capabilities to cordon off a
subnet. This development became part of the core demonstration performed for high-profile
visitors. The IDIP infrastructure provided the detection and response mechanisms necessary for
support. One feature that was available in IDIP only during IFE 2.1 was the capability to attack
the attacker’s machines. The mechanism was used as part of the red team exercise during IFE
2.1, again using the GTE red team. Once the team established a beach head on one of the
systems outside the primary firewall, the IDIP software launched a counter-attack against the
compromised machine to disable it from further communication. This frustrated red team efforts
because they did not detect the counter attack, and were unable to continue their attacks.

3.2.5.4 CIDF Demonstration (or IFE 2.2)

The June 1999 CIDF demonstration was used as a test of CISL maturity. Specific objectives
were to-

• Test ability to create interoperable CIDF components.

• Validate utility of CISL as a language for enabling correlation

• Demonstrate some simple correlation that shows value-added created by sharing analysis
results. The focus was on reducing the number of false positives and raising the number of
detections through analysis of detection results across the system.

 22

Figure 3-2 shows the configuration for the CIDF demonstration. Each detection component in
the demonstration was wrapped with an IDIP wrapper and integrated via IDIP into the system.
Correlation components were integrated at the Discovery Coordinator where all attack reports
were collected and distributed to these correlators. The following components were integrated
with IDIP to support the demonstration.

• Detectors

- SRI EMERALD BSM Analyzer

- ORA CORBA Anomaly Detector

- Oregon Graduate Institute StackGuard

- Net2 NetRadar

- NAI CyberCop Server

- Internet Security Systems (ISS) RealSecure

• Correlators

- Silicon Defense Corroborator

- Stanford Complex Event Processing (CEP) Correlator

The demonstration successfully accomplished the objectives through successful system
integration and development of algorithms by Stanford and Silicon Defense for using
corroboration to reduce false positives. Using heterogeneous detectors and the IDIP
infrastructure that collects attack reports at the Discovery Coordinator supported improved
detection rates.

 23

Gauntlet

Solaris
Discovery Coordinator

Silicon Defense
Corroborator

Solaris
Stanford

CEP
Correlator

Linux
Rome Labs Packet

Generator & Attack Host

Correlators

Solaris
NetRadar

NT
RealSecure

Network Detectors

NT CORBA
Attacker

Solaris Target
EMERALD BSM

Linux Target
StackGuard

NT
ORA CORBA

Detector

Host Detectors

Solaris Target
CyberCop Server

Figure 3-2. CIDF Demonstration Configuration

3.2.5.5 IFE 2.3

IFE 2.3 was the first major Information Assurance program-level experiment. The objective of
the experiment was to assess the viability of automated response as embodied in the IDIP
implementation. Unfortunately, flaws in the application used in the demonstration enabled the
red team from Sandia to sniff the user’s login and database passwords, and using those behave as

 24

a normal user achieving their objectives undetected. A follow-on run of this experiment did not
fix the application, but rather tried to improve the detection capabilities to be able to see the red
team activities in spite of the red team being able to gain access to user login and database
passwords. The new detection capabilities were able to detect the red team activities; however,
the response policy used during experiment execution was not appropriate to the job of stopping
the red team. This policy mis-configuration allowed the red team to proceed, just at a slower
pace. [36] includes details of the IFE and IFE rerun. Unfortunately, the only conclusions one
could derive from IFE were that (1) a sufficiently poorly conceived security design results in
flaws that can be easily exploited without detection and (2) poor configuration of the response
mechanisms cannot be expected to stop the adversary.

IDIP-enabled components involved in the IFE included CyberCop Server, EMERALD BSM
Monitor, EMERALD FTP Monitor, NetRadar, RealSecure, CyberCop Monitor, Gauntlet 5.0,
Sidewinder, MPOG, IP Filter, NAI Generic Software Wrappers, Discovery Coordinator, System
Management and Administration for Remote Trusted System (SMARTS) (integrated through the
Cyber Command System), and the Cyber Command Center. New IDIP features for this IFE
included some refinements to the IDIP software architecture, SNMP-based responses that disable
Ethernet ports on either hosts or switches, updated cryptographic mechanisms, new startup
software, new IDIP audit mechanisms, and CIDF implementation of IDIP.

For the IFE 2.3 rerun, some new detection and response capabilities were developed and
integrated. New detection capabilities included-

• ifstatus, which detects connection of a sniffer to the local host

• Oracle log processing

• NetRadar strings, which searched for disallowed commands

• NetRadar duplicate FTP connection detection

• EMERALD BSM disallowed commands

• MD5-hash, which detects modified files

• NAI Generic Software Wrappers disallowed command detection

A BSM reader was also developed that can detect disallowed command usage. This was
developed as a backup to EMERALD and Wrappers integration, but was not needed for the IFE.

The new response features integrated were host-based responses that enable an IDIP-enabled
host to kill processes and user sessions, and disable user accounts. Unfortunately, killing the
process instead of the user login session was used. This just kills the offending shell command,
which has generally completed its malicious task by the time detection occurs. Killing the user
session and disabling the compromised user account would have been a more appropriate
response and was recommended for experiment execution, however, it was not used. Had this
policy been used, it is unlikely that the red team would have been able to accomplish their
objectives so easily.

 25

3.2.5.6 IFE 3.1 Integration

For IFE 3.1, major changes to the Discovery Coordinator were made to enable Cyber Command
System control of IDIP policy mechanisms. In support of this integration, additional GUI
components were also developed to enable users at the Discovery Coordinator to modify IDIP
policy features. The GUI components provided both editing capabilities for detailed policy
modifications, plus some slide bar features to allow global changes of policy values and detector
throttling. Other controls provide access to INFOCON and Defensive Posture, a software-
controlled policy switching mechanism. A final GUI feature developed was an “attackometer”
that shows how much attack activity is currently being experienced by the administrative
domain.

3.2.5.7 Distributed Denial of Service Experiment

The Information Assurance program distributed denial of service experiment was designed to
determine the ability of the IDIP infrastructure to respond to distributed denial of service attacks.
In an attempt to validate the results, BBN repeated the experiment in the DARPA Technology
Integration Center. This project supported that effort by providing trouble-shooting of problems
they experienced in their lab setup.

The experiment results indicate that (1) the IDIP message layer does in fact survive the flood
attacks even when all other communication fails; and (2) the automated response can effectively
stop the attack allowing the application to proceed. Details on the experiment configuration,
execution, and detailed results are in [37].

3.2.6 Documentation

This project contributed to a number of technical reports detailing the IDIP architecture (ref. [1]),
application protocol (ref. [2]), message layer protocol (ref. [3]), key distribution protocol (ref.
[8], [9], [10], [11], [12]), and cryptographic privacy and integrity protocols. The IDIP
architecture, application protocol, and message layer protocol documents were started in this
contract, but completed in two other DARPA contracts: Active Networks Intrusion Detection
and Response and DDoS Tolerant Networks. The key distribution and cryptographic protocols
were originally developed under the Dynamic Cooperating Boundary Controllers contract, but
were updated in this effort. In addition, this project contributed to three papers: (ref. [4], [14],
and [37]).

The other major documentation effort performed by this contract was the development of
HTML-based user documentation. This documentation was developed to describe how to
compile, configure, and run the core IDIP applications, including descriptions of how the policy
mechanisms can be used to control the intrusion detection and response infrastructure. This
HTML-based documentation was subsequently updated under the Active Networks Intrusion
Detection and Response and DDoS Tolerant Networks, and is distributed with the IDIP software.
This documentation was tested by having a summer intern compile, configure, and run a set of
IDIP applications having no training on IDIP. This successful test indicates that the
documentation is suitable for use by knowledgeable developers.

 26

3.3 Related Work

This project was able to develop a large number of capabilities through synergy with two other
concurrent efforts: Adaptive System Security Policies and Information Assurance Integration.
All three projects developed components integrated into the shared IDIP code base. The
demonstrations and experiments in the Information Assurance program provided feedback that
was used to make the mechanisms developed in each of these three projects more robust.

The Adaptive System Security Policies project focused on implementation of the policy
mechanisms used to ensure that an IDIP-enabled system does not cause self-inflicted damage
worse than effects of the attack being blocked. The Automatic Response to Intrusion project
developed the management mechanisms to make better use of these policy mechanisms and
executed the demonstrations and experiments used to test these mechanisms.

The Information Assurance Integration project focused on how the intrusion detection and
response infrastructure interfaced to the Cyber Command System. The Automatic Response to
Intrusion project used the results of this integration as input to refinements to the intrusion
response infrastructure development.

This project also developed documentation of the IDIP application and message protocols, which
was subsequently completed in the Active Networks Intrusion Detection and Response and
DDoS Tolerant Networks projects.

The results of this contract also provided a starting point for the Multi-Community Cyber
Defense project, which expanded on the issues identified in this project related to intrusion
response across multiple administrative domains.
4. CONCLUSION

The focus of this project was to develop an intrusion detection and response infrastructure in
support of Information Assurance demonstrations and experiments. Using this technology in
environments subjected to red team attack provided significant insight into how to strengthen the
infrastructure to better withstand attack and support better responses.

Lessons-learned. The integration and experimentation process led to several lessons learned.

a. Experiment design. The initial IFE 2.3 failed to produce useful results for a number of
reasons. The introduction of an easily penetrable application in a highly secure environment
yielded a highly vulnerable system. The security measures could not overcome what were
obvious application deficiencies. Part of this was driven from a desire by some developers to
not make the red team’s job too difficult. This viewpoint was also apparent in the IFE 2.3
rerun where the response policies used were less than optimal to avoid making the red team’s
job too difficult. A second problem in the experiment implementation was that the
implementers made assumptions about the capabilities of selected components that were not
based on fact, but rather on conjecture. The result was that the experiment did not test what it
was intended to test. The lesson here is that the experiment detailed design must involve
researchers and developers sufficiently knowledgeable of the technologies involved who can
help assess whether the experiment will yield the desired results.

 27

b. Intrusion detection and response effectiveness. In spite of problems with IFE 2.3, the rerun
did show that when the attacks are detected, responses can affect red team behavior. Had the
correct responses been used, it is likely that the automated intrusion response infrastructure
would have significantly increased the red team’s cost, however, the experiment
implementation failed to test this hypothesis. The DDoS experiment show that automated
response can effectively stop the attack before any application degradation is noticed by the
user, again providing evidence that automated response is an effective capability when
applied correctly.

c. Low-cost integration strategies. The effort spent rearchitecting the IDIP software resulted
in an infrastructure that enabled low-cost component integration, feature modification, and
development of new capabilities. The large amount of software shared between components,
plus the simple API for integrating detectors provided most of the cost savings for integration
of detection and response components. The initial integration of NetRadar with this API took
only 8 hours. The major effort in integrating is determining how the detector's events map
into the CISL-defined events. To add a feature for all detection and response components
required adding the feature once. The loosely coupled messaging architecture built around a
publish-subscribe paradigm enabled easy insertion of new processes to perform new
functions.

d. Simple agent framework. The fact that almost every component in the Information
Assurance demonstrations hosted an IDIP agent enabled easy insertion of new globally
available features. The simple publish-subscribe agent framework allowed new features to be
added without affecting existing features. Adding the capability to spread INFOCON
throughout a system was simply a matter of adding an INFOCON publisher at the Discovery
Coordinator and subscribing to the message at each IDIP agent. Adding management features
and adding the vulnerability assessment tool management feature also required minimal
effort.

IDIP attributes. The mechanisms developed support the original IDIP requirements, as well as
providing better control over IDIP response. This project validated that IDIP met the desired
attributes set out as system objectives at the start of the project.

a. Real-time response. The IDIP response components use simple cost-benefit models to
determine an appropriate short-lived response that attempts to eliminate the attack quickly.
The algorithm can be made as efficient as standard routing algorithms. The short-term
response provides time for more sophisticated algorithms to determine better response.

b. Multiple administrative domains. The mechanisms defined allow each administrative
domain to operate autonomously with minimal knowledge of remote domains. The issues
involved in supporting sanitization of requests and adjusting responses from other domains to
allow minimally cooperating domains to respond to intrusions that cross domain boundaries
were identified. A subsequent project – Multi-Community Cyber Defense – developed the
mechanisms necessary to support this type of operation across administrative domain
boundaries.

 28

c. Minimal system performance impact. After initialization, IDIP consumes minimal network
bandwidth when there is no attack activity. Only infrequent keep-alive messages are used to
maintain the neighborhood state. During attacks, use of multicast operation and relatively
compact messages minimizes affects on network resources. IDIP-invoked filtering of
network traffic, which can cause boundary controller performance degradation, is designed to
be relatively short-lived, so that parts of the network far removed from the attack source have
only short-term affects once the Discovery Coordinator has implemented the optimal system
response. The IDIP mechanisms also only place responses along the attack path (or for
Discovery Coordinator-generated responses, along alternate paths available to the attacker).

d. Operating while the system is under attack. The use of a lightweight, secure, reliable User
Datagram Protocol (UDP) for communication reduces the effects of attacks on IDIP. This
was demonstrated during the DDoS experiment.

e. Autonomous response. The mechanisms defined allow each IDIP node and each Discovery
Coordinator to independently determine their responses based on the IDIP messages and
policy parameters.

f. Scalability. The use of IDIP “neighborhoods” (see Section 2) limited the knowledge required
of each IDIP component enabling easy growth of the IDIP system. IDIP components only
have to know about other IDIP components that are nearby, plus their discovery coordinator.
This reduces the management required for each component. IDIP has been used with
moderate sized neighborhoods such as the one used for IFE 2.3, and the effort to add more
nodes into a neighborhood or to add a new neighborhood is roughly linear in terms of
configuration effort and performance impact on the network.

g. Robustness. IDIP was able to continue intrusion response operation even during attacks that
flooded the network or slowed down IDIP components. Additional work, however, could
further improve this robustness.

h. End-user transparency. No application changes were required to allow IDIP operate within
a system. IDIP uses minimal network resources. When the system is under attack, IDIP
network utilization increases to support tracing and centralized reporting, but the number and
size of messages is still relatively small.

i. Simplicity. The IDIP application layer was particularly simple to implement and integrate
with the IDIP component prototypes. The use of a simple UDP-based protocol enabled quick
development of the IDIP message layer. The primary complexity in IDIP is the key
management functions required to provide IDIP self-protection.

j. Protection against spoofing. IDIP cryptographic services provide protection against the
spoofing of IDIP components through authentication and integrity mechanisms for IDIP
messages. A standard keyed hash algorithm is used to support authentication within each
IDIP neighborhood. The cryptographic mechanisms also support replay protection.

k. Compatibility with multiple encryption technologies. The initial IDIP implementation
used Fortezza hardware, however, IDIP’s cryptographic mechanisms are algorithm

 29

independent enabling integration of additional cryptographic algorithms to support varying
user requirements. The current cryptographic are shown in Table 2-.

Summary. This project produced a robust infrastructure for intrusion detection and response and
validated the value of automated response in reaction to cyber attack. This infrastructure was
integrated with a number of components in support of Information Assurance program
demonstrations and experiments. These demonstrations and experiments aided in refining the
requirements for the infrastructure and helped test aspects of effective automated intrusion
response. In the demonstrations and experiments, the IDIP protocol and this project contributed
much of the security technology integration accomplished in the Information Assurance
program. Beyond development of this infrastructure, this project also made significant
contributions to the CIDF effort, a pre-cursor to the IETF’s IDMEF.

The IDIP software demonstrated that automated response can be effective in stopping attacks.

• The IFE 2.3 rerun showed that automated response technology has promise in providing
protection against adversary attack provided the combination of prevention and detection
mechanisms do not provide the adversary with easy undetectable access to critical system
resources. New IDIP-related mechanisms would be useful for handling aggregated attack
data and to enable the IDIP agents to be more effective when the Discovery Coordinator is
not active.

• The DDoS experiment also showed that automated response is very effective in reacting to
DDoS attacks, and can stop the attack before the user notices any application degradation.

 30

5. REFERENCES

[1] D. Schnackenberg, T. Reid, K. Djahandari, B. Wilson, “Cooperative Intrusion Traceback
and Response Architecture (CITRA)”, NAI Labs Report #02-008, February 2002.

[2] K. Djahandari, B. Wilson, J. Thorpe, D. Schnackenberg, T. Reid, “Intruder Detection and
Isolation Protocol (IDIP) Application Layer Protocol Definition”, NAI Labs Report #02-
006, February 2002.

[3] K. Djahandari, B. Wilson, J. Thorpe, D. Schnackenberg, T. Reid, “Intruder Detection and
Isolation Protocol (IDIP) Message Layer Protocol Definition”, NAI Labs Report #02-
005, February 2002.

[4] D. Schnackenberg, H. Holliday, R. Smith, K. Djahandari, D. Sterne, “Cooperative
Intrusion Traceback and Response Architecture (CITRA)”, Proceedings of the Second
DARPA Information Survivability Conference and Exposition, San Diego, June 2001.

[5] Rich Feiertag, Cliff Kahn, Phil Porras, Dan Schnackenberg, Stuart Staniford-Chen, Brian
Tung, “A Common Intrusion Specification Language”, June 1999

[6] Intrusion Detection Message Exchange Format (IDMEF) ….

[7] Automated Intrusion Detection Environment (AIDE) ACTD.
http://www.if.afrl.af.mil/tech/thrusts/tp322_attack_detec.html.

[8] The Boeing Company. Neighborhood Key Information Distribution (NKID) Protocol
(Draft), Boeing Document Number D658-10818-1, February 1998.

[9] Trusted Information Systems, Inc. Intruder Detection Isolation Protocol (IDIP)
Authentication Header (AH), TIS Report Number 0699D, November 1997.

[10] Trusted Information Systems, Inc., IDIP AH with Hashed Message Authentication Codes
(HMAC)-SHA-1, TIS Report Number 0700D, November 1997.

[11] Trusted Information Systems, Inc., Intruder Detection Isolation Protocol (IDIP)
Encapsulating Security Payload (ESP), TIS Report Number 0698D, November 1997.

[12] Trusted Information Systems, Inc., IDIP ESP with SKIPJACK Cipher Block Chaining
(CBC), TIS Report Number 0701D, November 1997.

[13] OpenSSL Project, http://www.openssl.org/.

[14] D. Schnackenberg, K. Djahandari, and D. Sterne, “Infrastructure for Intrusion Detection
and Response”, Proceedings of the DARPA Information Survivability Conference and
Exposition, Hilton Head, SC, January 2000.

[15] LBNL’s Network Research Group, “libpcap, the Packet Capture library”,
http://ee.lbl.gov/.

[16] Clifford Kahn, Don Bolinger, Dan Schnackenberg, “Communication in the Common
Intrusion Detection Framework, v 0.7”, June 1998.

 31

[17] Secure Computing Corporation, Gauntlet Firewall,
http://www.securecomputing.com/index.cfm?sKey=979.

[18] Secure Computing Corporation, Sidewinder,
http://www.securecomputing.com/index.cfm?skey=232.

[19] Linux, http://www.linux.org/.

[20] IP Filter, http://coombs.anu.edu.au/~avalon/ip-filter.html.

[21] J. Epstein, “Architecture and Concepts of the ARGuE Guard”, to be published in
Proceedings of the 15th Annual Computer Security Applications Conference, Phoenix
AZ, December 1999.

[22] G. Lamperillo, “Architecture and Concepts of the MPOG”, NAI Labs Reference Number
#0768, June 1999.

[23] NAI Labs, Firewall Toolkit. http://www.nai.com/research/nailabs/network-
security/extended-secure.asp.

[24] TCP Wrappers http://cs-www.ncsl.nist.gov/tools/tools.htm.

[25] T. Fraser, L. Badger, M. Feldman, “Generic Software Wrappers “Hardening COTS
Software with Generic Software Wrappers”, Proceedings of the 1999 IEEE Symposium
on Security and Privacy, IEEE, Oakland, California, May 1999.

[26] Net Squared, Network Radar, http://www.NetSQ.com/.

[27] Ulf Lindqvist and Phillip A. Porras, “Detecting Computer and Network Misuse Through
the Production-Based Expert System Toolset (P-BEST)”, Proceedings of the 1999 IEEE
Symposium on Security and Privacy, IEEE, Oakland CA, May 1999.

[28] C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q.
Zhang, “StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow
Attacks”, Proceedings of the 7th USENIX Security Conference, San Antonio TX,
January 1998.

[29] M. Stillerman, C. Marceau, and M. Stillman, “Intrusion Detection for Distributed
Applications”, in Communications of the ACM 42:7, 1999.

[30] Network Associates, McAfee VirusScan, http://www.mcafee-at-
home.com/products/virusscan/default.asp.

[31] Internet Security Systems, RealSecure,
http://www.iss.net/products_services/enterprise_protection/rsnetwork/index.php.

[32] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt,
C. Wee, R. Yip, D. Zerkle, “GrIDS -- A Graph-Based Intrusion Detection System for
Large Networks”, Proceedings of the 19th National Information Systems Security
Conference, October 1996.

 32

[33] L. Perrochon, W. Mann, S. Kasriel, and D. C. Luckham, “Event Mining with Event
Processing Networks”, Proceedings of the Third Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Beijing, China, April 1999.

[34] Mountain Wave, Inc., “Adaptive Network Security Management”,
http://www.mountainwave.com/.

[35] Network Associates, Sniffer Technologies, http://www.sniffer.com/products/default.asp.

[36] “Adaptive System Security Policies Final Report”, Boeing Document D950-10458-1.
December 2000.

[37] D. Sterne, B. Wilson, K. Djahandari, D. Schnackenberg, H. Holliday, T. Reid,
“Autonomic Response to Distributed Denial of Service Attacks”, Proceedings of RAID
2001, Davis CA, October 2001.

 33

6. GLOSSARY

AH AUTHENTICATION HEADER

AIDE Automated Intrusion Detection Environment

API application programmer’s interface

BSM Basic Security Module

CBC cipher block chaining

CEP Complex Event Processing

CIDF Common Intrusion Detection Framework

CISL Common Intrusion Specification Language

CORBA Common Object Request Broker Architecture

COTS commercial off the shelf

DARPA Defense Advanced Research Projects Agency

DES Data Encryption Standard

DSA Digital Signature Algorithm

DDoS distributed denial of service

EMERALD Event Monitoring Enabling Responses to Anomalous Live Disturbances

ESP encapsulating security protocol

FTP File Transfer Protocol

GrIDS Graphical Intrusion Detection System

GUI graphical user interface

HMAC hashed message authentication code

HTML Hyper-Text Markup Language

HTTP Hyper-Text Transfer Protocol

IDIP Intruder Detection and Isolation Protocol

IDMEF Intrusion Detection Message Exchange Format

IETF Internet Engineering Task Force

IFD Integrated Feasibility Demonstration

IFE Integrated Feasibility Experiment

 34

IP Internet Protocol

KEA Key Exchange Algorithm

MPOG Multi-Protocol Object Gateway

NKID neighborhood key information distribution

SHA Secure Hash Algorithm

SMARTS System Management and Administration for Remote Trusted System

SNMP Simple Network Management Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

